An Adaptive Uniaxial Perfectly Matched Layer Method for Time-harmonic Scattering Problems

نویسندگان

  • ZHIMING CHEN
  • XINMING WU
چکیده

Abstract. The uniaxial perfectly matched layer (PML) method uses rectangular domain to define the PML problem and thus provides greater flexibility and efficiency in dealing with problems involving anisotropic scatterers. In this paper an adaptive uniaxial PML technique for solving the time harmonic Helmholtz scattering problem is developed. The PML parameters such as the thickness of the layer and the fictitious medium property are determined through sharp a posteriori error estimates. The adaptive finite element method based on a posteriori error estimate is proposed to solve the PML equation which produces automatically a coarse mesh size away from the fixed domain and thus makes the total computational costs insensitive to the thickness of the PML absorbing layer. Numerical experiments are included to illustrate the competitive behavior of the proposed adaptive method. In particular, it is demonstrated that the PML layer can be chosen as close to one wave-length from the scatterer and still yields good accuracy and efficiency in approximating the far fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of the Uniaxial Perfectly Matched Layer Method for Time-harmonic Scattering Problems in Layered Media∗

Abstract. In this paper, we propose a uniaxial perfectly matched layer (PML) method for solving the time-harmonic scattering problems in layered media. The exterior region of the scatterer is divided into two half spaces by an infinite plane, on two sides of which the wave number takes different values. We surround the computational domain where the scattering field is interested by a PML layer...

متن کامل

The Adaptive Perfectly Matched Layer Method for Time-harmonic Acoustic and Electromagnetic Scattering Problems

Abstract. The recently introduced perfectly matched layer (PML) method is an efficient method to reduce the exterior wave propagation problem which is defined in the unbounded domain to the problem in the bounded domain. Under the assumption that the exterior solution is composed of outgoing waves only, the basic idea of the PML technique is to surround the computational domain by a layer of fi...

متن کامل

Convergence of the Uniaxial Perfectly Matched Layer Method for Time-Harmonic Scattering Problems in Two-Layered Media

Abstract. In this paper, we propose a uniaxial perfectly matched layer (PML) method for solving the time-harmonic scattering problems in two-layered media. The exterior region of the scatterer is divided into two half spaces by an infinite plane, on two sides of which the wave number takes different values. We surround the computational domain where the scattering field is interested by a PML l...

متن کامل

An hp Adaptive Uniaxial Perfectly Matched Layer Method for Helmholtz Scattering Problems

We propose an adaptive strategy for solving high frequencyHelmholtz scattering problems. Themethod is based on the uniaxial PMLmethod to truncate the scattering problem which is defined in the unbounded domain into the bounded domain. The parameters in the uniaxial PML method are determined by sharp a posteriori error estimates developed by Chen and Wu [8]. An hp-adaptive finite element strateg...

متن کامل

An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems

Abstract. An adaptive perfectly matched layer (PML) technique for solving the time harmonic electromagnetic scattering problems is developed. The PML parameters such as the thickness of the layer and the fictitious medium property are determined through sharp a posteriori error estimates. Combined with the adaptive finite element method, the adaptive PML technique provides a complete numerical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007